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Abstract
The method of generalized conditional symmetry used by Fokas and Liu
for deriving nonintegrable evolution equations which possess exact analytic
solutions is here extended to the construction of differential-difference
equations supporting two-kink and two-soliton solutions. In particular, we build
the discrete analogue of a Burgers type equation with reaction term, investigated
in the continuous case by Satsuma, and describing the coalescence of two
travelling waves. We also derive the discrete form of a nondispersive evolution
equation possessing like the Korteweg–de Vries equation a two-soliton solution.

PACS numbers: 02.30.-f, 02.90.+p, 05.50.+q

1. Introduction

The concept of a generalized conditional symmetry (GCS) was introduced and used by
Fokas and Liu [1, 2] to obtain nonintegrable equations supporting multi-soliton and multi-
kink solutions and particular examples are related to Burgers and Korteweg–de Vries (KdV)
equations. For instance, the equation

ut = γ uxx + (1 − 3γ )uux + (1 − γ )(−u3 + αu + β) (1.1)

which is nonintegrable for γ �= 1 shares with the Burgers equation

ut = K1(u) ≡ uxx − 2uux (1.2)

the general solution of the nonlinear ordinary differential equation (ODE)

σ1(u) ≡ uxx − 3uux + u3 − αu− β = 0. (1.3)
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Under the transformation u = −ψx/ψ , equation (1.2) is linearizable into

ψt − ψxx = 0 (1.4)

while equation (1.3) is linearizable into

ψxxx − αψx + βψ = 0 (1.5)

with general solution

ψ =
3∑
i=1

Ai exp(λix) λ3
i − αλi + β = 0 Ai arbitrary. (1.6)

Therefore (1.3) represents the GCS for a two-kink solution. Now, equation (1.1) may be written
as

ut = K1(u) + (γ − 1)σ1(u) (1.7)

and under the transformation u = −ψx/ψ it can be associated with the linear equations

ψt − ψxx = 0 ψxxx − αψx + βψ = 0 γ �= 1. (1.8)

Therefore

ψ =
3∑
i=1

exp
(
λix + ωit + δi

)
ωi = λ2

i δi arbitrary. (1.9)

Choosing β = 0, equation (1.1) possesses the particular solution

u = −∂xLog
(
1 + exp θ+ + exp θ−

)
θ± = ±√

α x + α t + δ± (1.10)

which describes the coalescence of two kinks depending on the fixed parameter α. This
expression is also a solution of (1.2), with α being in this case an arbitrary constant.

For γ = 1/3 equation (1.1) is related to the Fitzhugh–Nagumo–Kolmogorov–Petrovskii–
Piskunov (KPP) equation [3–6] which arises in population dynamics, nerve pulse propagation
in nerve fibres and wall motion in liquid crystal while the case 1/3 < γ < 1 was first
investigated by Satsuma [7–9] who derived the particular solution (1.10), transforming the
evolution equation (1.1) into a bilinear form of the variable ψ .

Two other interesting examples are the nonintegrable equations

ut = −2uuxx + 2u2
x − 2u2ux − 2αux (1.11)

and

ut = u2
x + 2u2ux − 2αux + u4 + 2αu2 + 2β. (1.12)

They share with the potential KdV equation

ut = K2(u) ≡ uxxx + 6u2
x (1.13)

the solution of the nonlinear ODE

σ2(u) ≡ uuxx − u2
x

2
+ 2u2ux +

u4

2
+ αu2 + β = 0 (1.14)

which represents the GCS for the two-soliton solution and is linearizable. Indeed, under the
transformation u = vx/v, equation (1.14) takes the bilinear form

vxvxxx − 1
2v

2
xx + αv2

x + βv2 = 0 (1.15)

which by differentiation gives the fourth-order linear equation

vxxxx + 2αvxx + 2βv = 0. (1.16)
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Therefore, equation (1.14) possesses the general solution

u = ∂xLog

( 4∑
i=1

Ai exp(λix)

)
λ4
i + 2αλ2

i + 2β = 0 Ai arbitrary (1.17)

with λ2
1A1A2 = λ2

3A3A4. Equations (1.11) and (1.12) can be respectively written

ut = K2(u)− ∂xσ2(u)

u
(1.18)

ut = K2(u) + 2σ2(u)− ∂xσ2(u)

u
(1.19)

and under the transformation u = vx/v, they can be associated with the linear system

vt + 2vxxx + 6αvx = 0 vxxxx + 2αvxx + 2βv = 0 (1.20)

taking account of the first integral (1.15). Therefore, choosing α = −(λ2
+ + λ2

−) and
2β = (λ2

+ − λ2
−)

2,

v =
∑
±
A± exp

(
(λ+ ± λ−)x − 4(λ3

+ ± λ3
−)t

)
+

∑
±
B± exp

( − (λ+ ± λ−)x + 4(λ3
+ ± λ3

−)t
)

(1.21)

A+B+ = A−B−

(
λ+ − λ−
λ+ + λ−

)2

(1.22)

and one obtains for both equations (1.11) and (1.12) the particular solution

u = λ+ + λ− + ∂xLog(1 + exp θ+ + exp θ− + κ12 exp(θ+ + θ−)) (1.23)

θ± = −2λ±x + 8λ3
±t + δ± κ12 =

(
λ+ − λ−
λ+ + λ−

)2

. (1.24)

This expression is also a solution of (1.13), with λ+ �= λ− being in this case some arbitrary
constants.

The GCS (1.3) and (1.14) are particular cases of two linearizable nonlinear ODEs of the
Gambier classification [10] usually referred to as G5 and G27. They may be obtained from the
original definition of GCS which involves Fréchet differentiation, but can also be obtained using
the Bäcklund transformation or the linearization of the related integrable partial differential
equations.

In section 2 we use the latter technique to derive discrete GCS for the equations of the
discrete Burgers hierarchy [11] in order to obtain the discrete analogue of the nonintegrable
equation (1.1) which supports two-kink solutions. In section 3, we consider the so-
called Lotka–Volterra equation having as the continuous limit the KdV equation and derive
from its Bäcklund transformation the discrete equivalent of the GCS (1.14). This latter
linearizable difference equation is used for building discrete equivalents of the nonintegrable
equations (1.11) and (1.12) which both support a solution describing the elastic collision of
two solitary waves with fixed speeds.

This paper is an updated version of [12].

2. Discrete Satsuma equation

The discretization of the Burgers hierarchy has been given by Levi et al [11] and may be
written in the form

d

dT
U(n) = K(U) ≡

M∑
j=1

αj [U(n + j)− U(n)]
j−1∏
l=0

U(n + l) M = 1, 2, 3, . . . . (2.1)
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They may be linearized by the substitution,

U(n) = φ(n + 1)φ(n)−1 (2.2)

to give

d

dT
φ(n) =

M∑
j=1

αjφ(n + j). (2.3)

The N -kink solution corresponds to

φ(n) =
N+1∑
l=1

Al(λl)
n exp

[ M∑
j=1

αj (λl)
jT

]
(2.4)

where {Al}, {λl} are sets of arbitrary real constants. For simplification, the T -dependence of
U and φ is taken to be understood. It is straightforward to derive the nonlinear difference
equation satisfied by the N -kink solution (corresponding to the GCS of Fokas and Liu [2] in
the continuum case). Let λ1, λ2, . . . , λN+1 be the roots of the equation

λN+1 + c1λ
N + c2λ

N−1 + · · · + cNλ + cN+1 = 0 (2.5)

for any given set {cj } of coefficients. Then

φ(n + N + 1) + c1φ(n + N) + · · · + cNφ(n + 1) + cN+1φ(n) = 0. (2.6)

Dividing by φ(n),

σ(U) ≡
N∏
l=0

U(n + l) + c1

N−1∏
l=0

U(n + l) + · · · + cNU(n) + cN+1 = 0. (2.7)

This is the nonlinear difference equation of order N satisfied by the N -kink solution of (2.1),
given by (2.2) and (2.4). In analogy to the continuum case, this solution also satisfies the whole
family of evolution equations

d

dT
U(n) = K(U) + G(U, σ) (2.8)

where G(U, σ) is any function of U(n) and σ(U) such that G(U, 0) = 0.
We now restrict ourselves to the case whenM = 2, α1 = 0, α2 = 1 so that (2.1) becomes

d

dT
U(n) = K2(U) ≡ [U(n + 2)− U(n)]U(n + 1)U(n) (2.9)

which is a discrete form of the Burgers equation.
The two-kink solution of (2.9) is

U(n) = φ(n + 1)

φ(n)
φ(n) =

3∑
l=1

Al(λl)
n exp(λ2

l T ). (2.10)

When the λl are the roots of

λ3 + c1λ
2 + c2λ + c3 = 0 (2.11)

this solution satisfies the nonlinear difference equation

σ 2(U) ≡ U(n)U(n + 1)U(n + 2) + c1U(n)U(n + 1) + c2U(n) + c3 = 0. (2.12)

This equation represents a particular case of the discrete mapping obtained by Ramani et al [19]
and Grammaticos et al [20] as a result of the discretization of two projective Riccati equations.
Then, the equation

d

dT
U(n) = [U(n + 2)− U(n)]U(n + 1)U(n) + G(U, σ 2) (2.13)
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has the two-kink solution given by (2.10) when G(U, 0) = 0.
The discrete equations (2.9) and (2.12) have respectively as the continuous limit the

Burgers equation (1.2) and the GCS (1.3). Indeed, making the replacement n → nh, defining
the change of variables

U(nh, T ) = 1 − hu(x, t) x = nh + 2hT t = 2h2T (2.14)

and letting h → 0 in (2.9), with the product nh finite, the limit leads to

−2h3(ut − uxx − 2uux) + O(h4) = 0. (2.15)

On the other hand, setting in (2.12)

c1 = −3 c2 = 3 − αh2 c3 = −1 + αh2 + βh3 (2.16)

the limit gives

σ 2(U) ≡ −h3[uxx − 3uux + u3 − αu− β] + O(h4) = 0 (2.17)

where the expression between the brackets is identical to (1.3).
The discrete analogue of (1.1)

d

dT
U(n) = K2(U) + 2(γ − 1)σ 2(U) (2.18)

can explicitly be written, setting h = 1, as

d

dT
U(n) = [U(n + 2)− U(n)]U(n + 1)U(n) + 2(γ − 1)[U(n)U(n + 1)U(n + 2)

−3U(n)U(n + 1) + (3 − α)U(n) + (α + β − 1)]. (2.19)

Under the transformation U(n) = φ(n + 1)/φ(n), the associated linear system is

d

dT
φ(n) = φ(n + 2)− φ(n) φ(n + 3) + c1φ(n + 2) + c2φ(n + 1) + c3φ(n) = 0 (2.20)

where c1, c2 and c3 are given by (2.16). Therefore, choosing β = 0, a particular solution
of (2.19) is

1 − U(nh)

h
= −√

α
exp θ(n, T ,

√
α)− exp θ(n, T ,−√

α)

1 + exp θ(n, T ,
√
α) + exp θ(n, T ,−√

α)
(2.21)

θ(n, T ,
√
α) = nLog(1 +

√
αh) + 2

√
αhT + αh2T . (2.22)

Taking account of the relations in (2.14) the continuous limit for θ is

lim
h→0

θ(n, T ,
√
α) = √

α(x +
√
α t) (2.23)

and the expression (2.21) tends to (1.10).

3. Discrete conditional symmetry for two solitons

Let us consider two discrete forms of the KdV equation. The first one is the so-called Lotka–
Volterra equation, arising in prey–predator processes and in plasma physics [13, 14],

d

dT
[logNn] = Nn−1 −Nn+1 n = 0,±1,±2, . . . (3.1)

which may be written in potential form,

d

dT
[logXn] = 1 − Xn+1

Xn−1
n = 0,±1,±2, . . . (3.2)
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by taking

Nn(T ) = Xn+1(T )

Xn−1(T )
(3.3)

and choosing the integration constant equal to 1. The integrability of (3.1) has been proven by
Kac and van Moerbeke [16] and Manakov [17]. The second discrete equation was introduced
by Hirota and Satsuma [15]

d

dT

(
wn

1 + wn

)
= wn−1/2 − wn+1/2 (3.4)

which may in turn be written in the potential form

d

dT
[logYn] = Yn−1/2

Yn+1/2
− 1 n = 0,± 1

2 ,±1, . . . (3.5)

by taking

wn = Yn−1/2

Yn
− 1 (3.6)

and choosing the integration constant equal to −1. Equation (3.5) reduces to (3.2) by the
transformation

n → 2n Y2n = X−1
n (3.7)

and related transformation [18]

Nn = (1 + w2n)(1 + w2n+1). (3.8)

Due to this equivalence, we only use equation (3.2) for deriving the discrete GCS. Making the
transformation

Xn = fn+1/2/fn−1/2 (3.9)

equation (3.2) can be written in the bilinear form [21, 22]

[DT sinh( 1
2Dn) + 2 sinh(Dn) sinh( 1

2Dn)]fn · fn = 0 (3.10)

with the definitions

DT a · b = aT b − a bT exp(εDn) an · bn = a(n + ε) b(n− ε) (3.11)

and the corresponding Bäcklund transformation is

exp(− 1
2Dn)fn · f̃n = [λ exp( 3

2Dn) + µ exp( 1
2Dn)]fn · f̃n (3.12)

[DT − λ exp(2Dn)− γ ]fn · f̃n = 0 (3.13)

where fn and f̃n are two distinct solutions of (3.10).
Setting in the Bäcklund transformation λ = λ1, µ = 1 − λ1, γ = −λ1 and fn = 1, the

two linear equations

f̃n+1/2 = λ1f̃n−3/2 + (1 − λ1)f̃n−1/2 (3.14)

f̃n,T + λ1f̃n−2 − λ1f̃n = 0 (3.15)

define the one-soliton solution which corresponds to the form

f̃n = 1 + exp (2(ω1T − p1n) + η1) (3.16)

with λ1 = − exp(−2p1), ω1 = sinh 2p1 and p1, η1 arbitrary constants. The corresponding
solution of (3.2) defined as X̃n = f̃n+1/2/f̃n−1/2 satisfies the discrete Riccati equation

σ 1(n) ≡ X̃n−1X̃n − λ1 − (1 − λ1)X̃n−1 = 0. (3.17)
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Interchanging the fn and f̃n in (3.12) and setting µ = 1 − λ2, γ = −λ2, we have

f̃n−1/2fn+1/2 = λ2f̃n+3/2fn−3/2 + (1 − λ2)f̃n+1/2fn−1/2 (3.18)

where fn now corresponds to the two-soliton solution.
Dividing through by f̃n+1/2fn−1/2, it becomes

Xn

X̃n

= λ2
X̃n+1

Xn−1
+ (1 − λ2). (3.19)

Eliminating X̃n between (3.17) for σ 1(n + 1) and (3.19) gives

X̃n+1 = Xn−1[λ1(1 − λ2) + (1 − λ1)Xn]

[XnXn−1 − λ1λ2]
. (3.20)

Substituting back in (3.17) we obtain the following difference equation

σ 2(n) ≡ Xn (λ1(1 − λ2) + (1 − λ1)Xn+1) (λ2(1 − λ1) + (1 − λ2)Xn+1)

−(Xn+1Xn − λ1λ2)(Xn+2Xn+1 − λ1λ2) = 0 (3.21)

which corresponds to the discrete GCS for the two-soliton solution.
Now making the transformation (3.9) in (3.21), this equation becomes

En ≡ (λ1(1 − λ2)fn+1/2 + (1 − λ1)fn+3/2)(λ2(1 − λ1)fn+1/2 + (1 − λ2)fn+3/2)

−(fn+3/2 − λ1λ2fn−1/2)(fn+5/2 − λ1λ2fn+1/2) = 0. (3.22)

Therefore, the ratio

λ1λ2En−1 − En

fn+3/2 − λ1λ2fn−1/2
≡ fn+5/2 − (1 − λ1)(1 − λ2)fn+3/2

−λ1λ2

(
(1 − λ2)

2

λ2
+
(1 − λ1)

2

λ1
+ 2

)
fn+1/2

−λ1λ2(1 − λ1)(1 − λ2)fn−1/2 + λ2
1λ

2
2fn−3/2 = 0 (3.23)

is a linear difference equation of fourth order which corresponds to the linearization (1.16) in
the continuum case. If one substitutes

x = nh λi = −1 + 2hλ̄i Xn = 1 + h
(
u(x)− (λ̄1 + λ̄2)

)
(3.24)

in (3.21), it gives

−2h4

[
uuxx − 1

2
u2
x + 2u2ux − (λ̄1

2
+ λ̄2

2
)u2 +

u4

2
+

1

2
(λ̄2

1 − λ̄2
2)

2

]
+ O(h5) = 0. (3.25)

Dividing through by −2h4 and letting h → 0, this expression corresponds to the GCS (1.14)
with α = −(λ̄2

1 + λ̄2
2), β = 1

2 (λ̄
2
1 − λ̄2

2)
2.

We now build two lattice equations which share with the integrable differential-difference
equation (3.1) the two-soliton solution satisfying the GCS (3.21) and which possess as
continuous limit respectively the nonintegrable partial differential equations (1.11) and (1.12).

First, we consider the continuous limit of equation (3.2). Taking

Xn(T ) ≡ X(nh, T ) = 1 + h(u(x, t) + c) x = nh− 2hT t = −h3T/3 (3.26)

with c arbitrary, we obtain

− 1
3h

4(ut − uxxx − 6u2
x) + O(h5) = 0 (3.27)

so that dividing through by −h4/3 and letting h → 0, we recover the potential KdV
equation (1.13).
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Then, we consider the lattice equation

d

dT
Xn = Xn − Xn+1Xn

Xn−1
− σ 2(n− 1)

(XnXn−1 − λ1λ2)Xn−1
(3.28)

≡ Xn − λ1λ2

Xn−1
− (λ1(1 − λ2) + (1 − λ1)Xn) (λ2(1 − λ1) + (1 − λ2)Xn)

(XnXn−1 − λ1λ2)
(3.29)

which is a discrete equation of first order possessing the two-soliton solution of (3.2). To get
its continuous limit, instead of (3.28) we consider

d

dT
Xn = Xn − Xn+1Xn

Xn−1
−

1
3 (σ 2(n)− σ 2(n− 1))− h2

3 σ 2(n) + 4h2

3 σ 2(n− 1)

(XnXn−1 − λ1λ2)Xn−1
(3.30)

which is identical to (3.28) for h = 1. Then, using the relations (3.26) with

c = −(λ̄1 + λ̄2) λi = −1 + 2hλ̄i (3.31)

we have that

σ 2(n)− σ 2(n− 1)

(XnXn−1 − λ1λ2)Xn−1
= −h4

{
uxxx + 4u2

x + 2uxxu− 2ux(λ̄
2
1 + λ̄2

2) + 2u2ux
}

+ O(h5)

(3.32)

and the lattice equation (3.30) becomes

h4
{
ut + 2uxxu− 2u2

x + 2u2ux − 2(λ̄2
1 + λ̄2

2)ux
}

+ O(h5) = 0. (3.33)

Dividing through by h4 and letting h → 0 we recover equation (1.11).
We now consider the expression

G(X, σ 2) = λ1λ2σ 2(n− 1)− σ 2(n)XnXn−1

(Xn+1Xn − λ1λ2)Xn−1
+ 2

σ 2(n− 1)

Xn−1
(3.34)

≡ (λ1λ2 −XnXn−1)σ 2(n− 1)

(XnXn+1 − λ1λ2)Xn−1
− (σ 2(n)− σ 2(n− 1))Xn

XnXn+1 − λ1λ2
+ 2

σ 2(n− 1)

Xn−1

(3.35)

which in the limit h → 0 gives

G(X, σ 2) ≡ −h4(2σ2(u)− ∂xσ2(u)/u) + O(h5) (3.36)

where σ2(u) is the GCS (1.14). Therefore, the lattice equation

d

dT
Xn = Xn − Xn+1Xn

Xn−1
+

1

3
G(X, σ 2) (3.37)

becomes

h4
{
ut − u2

x − 2u2ux − 2(λ̄2
1 + λ̄2

2)ux − u4 + 2(λ̄2
1 + λ̄2

2)u
2 − (λ̄2

1 − λ̄2
2)

2
}

+ O(h5) = 0

(3.38)

and dividing through by h4, letting h → 0, it corresponds to (1.12).
With transformation (3.9) and definition (3.22) for En one gets the identification

σ 2(n) ≡ En

fn+1/2fn−1/2
(3.39)

G(X, σ 2) ≡ λ1λ2En−1 − En

fn−1/2(fn+3/2 − λ1λ2fn−1/2)
+ 2

En−1

f 2
n−1/2

(3.40)
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so that the lattice equation (3.37) can be written in the bilinear form

3

(
fn−1/2

d

dT
fn+1/2 − fn+1/2

d

dT
fn−1/2

)
= (2λ1λ2 − 3)fn+3/2fn−3/2

+2(1 − λ1)(1 − λ2)f
2
n+1/2 − 2fn+3/2fn+1/2 + fn+5/2fn−1/2

−(1 − λ1)(1 − λ2)fn+3/2fn−1/2 +
(
3 + λ1(1 − λ2)

2 + λ2(1 − λ1)
2
)

×fn+1/2fn−1/2 − λ2
1λ

2
2fn−3/2fn−1/2 + λ1λ2(1 − λ1)(1 − λ2)f

2
n−1/2. (3.41)

This equation possesses the two-soliton discrete solution fn ≡ F (2)(nh, T ), with

F (2)(nh, T ) = 1 + exp21 + exp22 + κ12(h) exp (21 + 22) (3.42)

2i(n, T ) = −2pinh + 2 sinh(2hpi)T (3.43)

κ12(h) =
(
λ1 − λ2

1 − λ1λ2

)2

λi = − exp(−2hpi) i = 1, 2. (3.44)

In the continuous limit h → 0, taking account of the change of variables (3.26), one recovers
the two-soliton of the KdV equation

lim
h→0

F (2)(nh, T ) = 1 + exp(θ1) + exp(θ2) + κ12(h) exp(θ1 + θ2) (3.45)

θi(x, t) = −2pix − 8p3
i t κ12 ≡ lim

h→0
κ12(h) =

(
p1 − p2

p1 + p2

)2

. (3.46)

4. Conclusion

We have derived in this paper discrete equivalents of nonintegrable evolution equations which
possess exact two-kink and two-soliton solutions. In the continuous case, although those
equations take a bilinear form after a transformation on the dependent variable, they cannot
be written only with Hirota differential operators. This feature is also valid for their discrete
counterparts as is clear from (3.41) whose right-hand side cannot simply be written in terms
of discrete Hirota operators.

It might be interesting to scrutinize the lattice equations to obtain other exact solutions
and to extend this study to more than one-space dimension, both in continuous and discrete
cases.
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